organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-Butyl-9H-carbazole

Lei Chen, Wei Cheng, Guang-Liang Song and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 16 December 2008; accepted 17 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.059; wR factor = 0.147; data-to-parameter ratio = 8.9.

The title compound, $C_{16}H_{17}N$, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as an OLED. The tricyclic aromatic ring system is essentially planar, the two outer rings making a dihedral angle of 4.8 (1)°. No classical hydrogen bonds are observed in the crystal structure.

Related literature

For typical bond lengths in organic structures, see: Allen *et al.* (1987); For general background and related structures, see: Yang *et al.* (2004).

Experimental

Crystal data

```
C<sub>16</sub>H<sub>17</sub>N

M_r = 223.31

Orthorhombic, P2_12_12_1

a = 5.544 (1) Å

b = 11.276 (2) Å

c = 20.369 (4) Å
```

Data collection

```
Enraf-Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.980, T_{\max} = 0.993
2671 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.147$ S = 1.001372 reflections V = 1273.4 (4) Å³ Z = 4Mo K α radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

1372 independent reflections 1500 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ 3 standard reflections every 200 reflections intensity decay: 1%

154 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.17$ e Å^{-3} $\Delta \rho_{\rm min} = -0.14$ e Å^{-3}

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2093).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2004). J. Am. Chem. Soc. 127, 3278–3279. supplementary materials

Acta Cryst. (2009). E65, o574 [doi:10.1107/S1600536809005583]

9-Butyl-9H-carbazole

L. Chen, W. Cheng, G.-L. Song and H.-J. Zhu

Comment

The title compound, $C_{16}H_{17}N$, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as OLED (Yang *et al.*, 2004). We report herein the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The tricyclic aromatic ring system is essentially planar. There are no classical hydrogen bonds observed in the crystal structure.

Experimental

The title compound, (I), was prepared by a method reported in literature (Yang *et al.*, 2004). The crystals were obtained by dissolving (I) (0.2 g) in petroleum ether (b.p. 60–90 °C) (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically, C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/O)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

9-Butyl-9H-carbazole

Crystal data C₁₆H₁₇N

$M_r = 223.31$	$D_{\rm x} = 1.165 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 25 reflections
a = 5.544 (1) Å	$\theta = 9-13^{\circ}$
b = 11.276 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 20.369 (4) Å	T = 298 K
V = 1273.4 (4) Å ³	Needle, colourless
Z = 4	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4	

diffractometer	$R_{\text{int}} = 0.062$
Radiation source: fine-focus sealed tube	$\theta_{max} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 298 K	$h = 0 \rightarrow 6$
$\omega/2\theta$ scans	$k = 0 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -24 \rightarrow 24$
$T_{\min} = 0.980, \ T_{\max} = 0.993$	3 standard reflections
2671 measured reflections	every 200 reflections
1372 independent reflections	intensity decay: 1%
1500 reflections with $I > 2\sigma(I)$	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 0.13P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, where *F* is the threshold expression of $F^2 > \sigma(F^2)$ and $F^2 = \sigma(F^2)$.

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у		z		Uiso*	$/U_{eq}$	
Ν	0.1136 (6)	0.1561 (2)		0.16013	(14)	0.063	9 (8)	
C1	-0.0693 (11)	-0.1920 (4)		0.0678 (2)	0.1075 (18)		
H1A	-0.2201	-0.2294		0.0782		0.161	*	
H1B	0.0570	-0.2502		0.0680		0.161	*	
H1C	-0.0796	-0.1563		0.0251		0.161	*	
C2	-0.0144 (8)	-0.0965 (3)		0.1188 (2)	0.077	0 (12)	
H2A	-0.1447	-0.0391		0.1191		0.092	*	
H2B	-0.0074	-0.1329		0.1619		0.092	*	
C3	0.2163 (8)	-0.0341 (3)		0.10593	(19)	0.074	8 (12)	
H3A	0.2051	0.0050		0.0636		0.090	*	
H3B	0.3441	-0.0926		0.1030		0.090	*	
C4	0.2869 (8)	0.0583 (3)		0.1576 ((2)	0.078	4 (12)	
H4A	0.2952	0.0205		0.2003		0.094	*	
H4B	0.4456	0.0894		0.1474		0.094	*	
C5	-0.0714 (7)	0.1694 (3)		0.20522	(18)	0.064	2 (9)	
C6	-0.1348 (8)	0.0987 (4)		0.25810	(19)	0.076	4 (12)	
H6A	-0.0507	0.0294		0.2676		0.092	*	
C7	-0.3244 (11)	0.1343 (4)		0.2957 ((2)	0.093	7 (15)	
H7A	-0.3660	0.0899		0.3325		0.112	*	
C8	-0.4570 (10)	0.2346 (4)		0.2807 ((2)	0.095	3 (15)	
H8A	-0.5891	0.2548		0.3065		0.114	*	
C9	-0.3964 (8)	0.3046 (4)		0.2283 ((2)	0.081	0 (12)	
H9A	-0.4878	0.3713		0.2182		0.097	*	
C10	-0.1954 (7)	0.2748 (3)		0.18976	(18)	0.062	0 (9)	
C11	-0.0777 (7)	0.3272 (3)		0.13483	(17)	0.062	1 (9)	
C12	-0.1083 (9)	0.4315 (3)		0.0996 (2)	0.074	1 (12)	
H12A	-0.2352	0.4824		0.1095		0.089	*	
C13	0.0510 (11)	0.4591 (3)		0.0499 (2)	0.090	3 (15)	
H13A	0.0320	0.5295		0.0266		0.108	*	
C14	0.2388 (11)	0.3834 (4)		0.0341 (2)	0.087	9 (14)	
H14A	0.3439	0.4040		0.0004		0.105	*	
C15	0.2736 (9)	0.2782 (3)		0.06719	(19)	0.075	9 (11)	
H15A	0.3981	0.2269		0.0559		0.091*		
C16	0.1142 (7)	0.2517 (3)		0.11837	(18)	0.062	1 (9)	
Atomic displaceme	ent parameters (Å	²)						
l	J ¹¹ (U ²²	U^{33}		U^{12}		U^{13}	U^{23}
N (0.0568 (19)	0.0591 (15)	0.0759 (19)	0.0061 (15)		-0.0073 (18)	0.0044 (14)
C1 (0.124 (5)	0.098 (3)	0.100 (3))	-0.004 (4)		-0.009 (4)	-0.027 (3)
C2 (0.069 (3)	0.083 (2)	0.079 (3))	-0.001 (2)		0.012 (3)	-0.003 (2)
C3 (0.072 (3)	0.069 (2)	0.083 (3))	0.009 (2)		0.005 (2)	0.002 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C4	0.071 (3)	0.068 (2)	0.097 (3)	0.016 (2)	-0.007 (3)	0.003 (2)
C5	0.067 (2)	0.0624 (19)	0.063 (2)	-0.0042 (19)	-0.008 (2)	-0.0021 (17)
C6	0.074 (3)	0.086 (3)	0.070 (2)	-0.010 (2)	-0.007 (3)	0.005 (2)
C7	0.106 (4)	0.102 (3)	0.073 (3)	-0.017 (3)	0.011 (3)	-0.005 (2)
C8	0.090 (4)	0.117 (3)	0.079 (3)	-0.015 (3)	0.015 (3)	-0.035 (3)
C9	0.069 (3)	0.087 (3)	0.087 (3)	0.003 (2)	-0.004 (3)	-0.018 (2)
C10	0.061 (2)	0.066 (2)	0.059 (2)	0.0000 (18)	-0.002 (2)	-0.0108 (17)
C11	0.062 (2)	0.0638 (18)	0.060 (2)	-0.002 (2)	-0.009 (2)	-0.0041 (16)
C12	0.082 (3)	0.061 (2)	0.080 (3)	0.010 (2)	-0.017 (3)	-0.0081 (19)
C13	0.120 (4)	0.069 (2)	0.081 (3)	-0.006 (3)	-0.017 (3)	0.005 (2)
C14	0.100 (4)	0.091 (3)	0.072 (3)	-0.017 (3)	0.004 (3)	0.008 (2)
C15	0.070 (3)	0.077 (2)	0.081 (3)	-0.006 (2)	0.010 (2)	-0.002 (2)
C16	0.061 (2)	0.0595 (17)	0.066 (2)	0.0048 (19)	-0.004 (2)	-0.0030 (17)

Geometric parameters (Å, °)

N—C16	1.373 (4)	С6—Н6А	0.9300
N—C5	1.385 (4)	C7—C8	1.384 (6)
NC4	1.463 (4)	С7—Н7А	0.9300
C1—C2	1.527 (5)	C8—C9	1.369 (5)
C1—H1A	0.9600	C8—H8A	0.9300
C1—H1B	0.9600	C9—C10	1.403 (5)
C1—H1C	0.9600	С9—Н9А	0.9300
С2—С3	1.483 (6)	C10—C11	1.423 (5)
C2—H2A	0.9700	C11—C12	1.388 (4)
С2—Н2В	0.9700	C11—C16	1.403 (5)
C3—C4	1.532 (5)	C12—C13	1.380 (6)
С3—НЗА	0.9700	C12—H12A	0.9300
С3—Н3В	0.9700	C13—C14	1.384 (6)
C4—H4A	0.9700	C13—H13A	0.9300
C4—H4B	0.9700	C14—C15	1.378 (5)
С5—С6	1.385 (5)	C14—H14A	0.9300
C5—C10	1.409 (4)	C15—C16	1.399 (5)
C6—C7	1.361 (6)	C15—H15A	0.9300
C16—N—C5	109.1 (3)	С5—С6—Н6А	121.2
C16—N—C4	124.6 (3)	C6—C7—C8	121.8 (4)
C5—N—C4	126.2 (3)	С6—С7—Н7А	119.1
C2-C1-H1A	109.5	С8—С7—Н7А	119.1
C2—C1—H1B	109.5	C9—C8—C7	120.9 (5)
H1A—C1—H1B	109.5	C9—C8—H8A	119.6
C2-C1-H1C	109.5	С7—С8—Н8А	119.6
H1A—C1—H1C	109.5	C8—C9—C10	119.5 (4)
H1B—C1—H1C	109.5	С8—С9—Н9А	120.2
C3—C2—C1	112.7 (4)	С10—С9—Н9А	120.2
С3—С2—Н2А	109.0	C9—C10—C5	117.7 (4)
C1—C2—H2A	109.0	C9—C10—C11	134.8 (4)
C3—C2—H2B	109.0	C5-C10-C11	107.6 (3)
C1—C2—H2B	109.0	C12-C11-C16	118.9 (4)
H2A—C2—H2B	107.8	C12—C11—C10	134.5 (4)

C2—C3—C4	114.9 (4)	C16—C11—C10	106.5 (3)
С2—С3—НЗА	108.5	C13—C12—C11	119.5 (4)
С4—С3—НЗА	108.5	C13—C12—H12A	120.3
С2—С3—Н3В	108.5	C11—C12—H12A	120.3
С4—С3—Н3В	108.5	C12—C13—C14	120.9 (4)
НЗА—СЗ—НЗВ	107.5	С12—С13—Н13А	119.6
N—C4—C3	111.6 (3)	C14—C13—H13A	119.6
N—C4—H4A	109.3	C15—C14—C13	121.5 (4)
C3—C4—H4A	109.3	C15—C14—H14A	119.2
NC4H4B	109.3	C13—C14—H14A	119.2
C3—C4—H4B	109.3	C14—C15—C16	117.4 (4)
H4A—C4—H4B	108.0	C14—C15—H15A	121.3
C6—C5—N	129.9 (4)	C16—C15—H15A	121.3
C6—C5—C10	122.4 (4)	N—C16—C15	129.1 (4)
N—C5—C10	107.7 (3)	N—C16—C11	109.1 (3)
C7—C6—C5	117.7 (4)	C15—C16—C11	121.8 (3)
С7—С6—Н6А	121.2		
C1—C2—C3—C4	-177.0 (3)	C9—C10—C11—C12	3.9 (7)
C16—N—C4—C3	-82.4 (4)	C5-C10-C11-C12	-176.8 (4)
C5—N—C4—C3	99.4 (4)	C9—C10—C11—C16	-179.1 (4)
C2—C3—C4—N	-64.0 (4)	C5-C10-C11-C16	0.2 (4)
C16—N—C5—C6	-176.8 (4)	C16-C11-C12-C13	-0.6 (5)
C4—N—C5—C6	1.6 (6)	C10-C11-C12-C13	176.1 (4)
C16—N—C5—C10	2.0 (4)	C11—C12—C13—C14	0.8 (6)
C4—N—C5—C10	-179.6 (3)	C12—C13—C14—C15	0.1 (7)
NC5C6C7	178.7 (4)	C13-C14-C15-C16	-1.2 (6)
C10-C5-C6-C7	0.1 (5)	C5—N—C16—C15	177.2 (4)
C5—C6—C7—C8	2.6 (6)	C4—N—C16—C15	-1.2 (6)
C6—C7—C8—C9	-2.3 (7)	C5—N—C16—C11	-1.9 (4)
C7—C8—C9—C10	-0.7 (6)	C4—N—C16—C11	179.7 (3)
C8—C9—C10—C5	3.2 (5)	C14—C15—C16—N	-177.5 (4)
C8—C9—C10—C11	-177.5 (4)	C14-C15-C16-C11	1.5 (5)
C6—C5—C10—C9	-3.0 (5)	C12-C11-C16-N	178.6 (3)
NC5C10C9	178.1 (3)	C10-C11-C16-N	1.0 (4)
C6-C5-C10-C11	177.6 (3)	C12-C11-C16-C15	-0.6 (5)
N-C5-C10-C11	-1.3 (4)	C10-C11-C16-C15	-178.1 (3)

